Incorporating these powerful tools into an enterprise tech architecture requires meticulous planning, akin to managing a team of writers. Just as overseeing five writers across different projects demands strategic coordination and oversight, handling multiple generatively trained AI models necessitates comparable vigilance. Here’s where our technology leaders, our CIOs and CTOs, truly shine bright.
A robust data architecture needs to be developed. Think of it as building a comprehensive library filled with essential, high-quality internal data sets necessary for training these ‘writer’ AIs effectively. This includes structured data like customer information and sales history, unstructured data like customer reviews, and meticulously labeled training data. Governance policies to maintain data integrity and privacy are also paramount.
For engineers, consider implementing tiered access levels—giving the necessary individuals the ability to invoke functions and provide contextual data when required, akin to granting them creative freedom while maintaining editorial control over final outputs.
Cross-departmental collaboration is pivotal. For example, the Chief Human Resources Officer (CHRO) can play a role in training and development programs to upskill staff in AI literacy, ensuring seamless integration of generative AI across all organizational levels, akin to collaborative editing in large-scale publications.